Topic 5 -
Exact Equations

Suppose you have a first-order
\nequation of the form
\n
$$
M(x,y) + N(x,y) \cdot y' = 0
$$

\nAnd further suffices there exists a
\nfunction $f(x,y)$ where
\n $\frac{\partial f}{\partial x} = N(x,y)$ and $\frac{\partial f}{\partial y} = N(x,y)$
\nThen we have that
\n $M(x,y) + N(x,y) \cdot y' = 0$
\nbecomes
\n $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} = 0$
\nWe
\n $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} = 0$
\n $\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}} = \frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial y}} = \frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial y}}$
\nWhich is equivalent to
\n $\frac{df}{dx} = 0$
\n $\frac{d f}{dx} = \frac{\frac{\partial f}{\partial x}}{\frac{\partial x}{\partial x}} \cdot \frac{d}{dx}(x)$
\nSo for example
\nthe family of course

$$
f(x,y)=c
$$
 where c is a constant
with then satisfy $\frac{\partial f}{\partial x}=0$ and
hence $f(x,y)=c$ will give
an implicit solution b the ODE.

- S ummary If = M(X ,) and ^E ⁼N(x , 7) then the family jf curves [f(x,y) ⁼ ^c tant will cuns where ^C is any to give ^Implicit so lutions N(x,y): ^y ⁼ ⁸ M(x , y) ⁺ -

When the above conditions are c all M(x,y)+N(x,y)Y י
= 0 Satisfied then we an exact equation. nen we
equatiun.

Ex: Consider the equation

\n
$$
\frac{2xy}{N(x,y)} + \frac{(x^2-1)y'}{N(x,y)} = 0
$$
\nLet $f(x,y) = x^2y-y$ and $f(x,y)$

\n
$$
\frac{\partial f}{\partial x} = 2xy = M(x,y)
$$
\n
$$
\frac{\partial f}{\partial y} = x^2 - 1 = N(x,y)
$$
\n
$$
\frac{\partial f}{\partial y} = x^2 - 1 = N(x,y)
$$
\nThus, the equation

\n
$$
x^2y - y = c
$$
\n
$$
y = c
$$
\n
$$
\frac{2xy}{x} + (x^2-1)y' = 0
$$
\nThus, the equation

\n
$$
2xy + (x^2-1)y' = 0
$$
\n
$$
\frac{2xy}{x} + \frac{(x^2-1)y'}{x} = 0
$$
\nThe this case we can actually solve ge^{-1}

\n
$$
\frac{6}{5}y = \frac{c}{x^2-1}
$$
\nWe get $y = \frac{c}{x^2-1}$

Let's verify that this work:
\nWe have
\n
$$
y = \frac{c}{x^{2} - 1} = c(x^{2} - 1)^{-1}
$$
\n
$$
y' = -c(x^{2} - 1)^{-2} \cdot (2x) = \frac{-2x^{c}}{(x^{2} - 1)^{2}}
$$
\n
$$
y' = -c(x^{2} - 1)^{-2} \cdot (2x) = \frac{-2x^{c}}{(x^{2} - 1)^{2}}
$$
\n
$$
2xy + (x^{2} - 1)y' = 0
$$
\nwe get
\n
$$
2x(\frac{c}{x^{2} - 1}) + (x^{2} - 1)(\frac{-2x^{c}}{(x^{2} - 1)^{2}}) = 0
$$
\n
$$
2x(\frac{c}{x^{2} - 1}) + (x^{2} - 1)(\frac{-2x^{c}}{(x^{2} - 1)^{2}}) = 0
$$
\nSo we did indeed find a solution.

How do we know if we have an exact equation?

Theorem:	Let M(x,y) and N(x,y)
be continuous and have continuous first parallel R defined by the rectangle R defined by the a <xc and="" b="" c-y<d<="" td="">\n</xc>	
Then [M(x,y)+N(x,y)\cdot y'=0 is exact if and only if by = $\frac{\partial N}{\partial x}$	

$$
\frac{Ex}{2xy} + (x^{2}-1)y' = 0
$$
\n
$$
\frac{2xy}{M(x,y)} + (x^{2}-1)y' = 0
$$
\nwe have that M and N are continuous
\nevery where and $\frac{3M}{2y} = 2x$ $\frac{exist and}{dx}$
\n
$$
\frac{\partial M}{\partial x} = 2y \frac{3y}{dy} = 0
$$
\n
$$
\frac{d}{dx} = 0
$$

Note that
\n
$$
\frac{\partial M}{\partial y} = 2x = \frac{\partial M}{\partial x}
$$
\nSo we know that
\n
$$
2xy + (x^2 - 1)y' = 0
$$
\nis exact.
\n
$$
\frac{\partial M}{\partial y} = \frac{2}{\sqrt{2}} \times \frac{2}{\sqrt{2}}
$$
\nis exact.
\n
$$
\frac{\partial M}{\partial y} = \frac{\partial M}{\partial x}
$$
\n
$$
\frac{\partial M}{\partial y} = 0
$$
\nis need as 4 when 4 when 1

 $\overline{\Delta f}$ = 2xy $\big\{ \omega$ $\frac{\partial f}{\partial x} = 2xy$ Q $Q = x^2 - 1$ $Q = x^2 - 1$ of イント
コート
フィー 2] Let's use equation 1 first. Integrate $\frac{25}{x} = 2x$ y $\widetilde{\delta}$ x with respect to x to get $\begin{array}{c}\n\text{1} & \text{1} & \text{1} \\
\text{1} & \text{1} & \text{1} & \text{1} \\
\end{array}$ $f(x)$ $y_1 = x^2y + g(y)$ d $\frac{g(y_1 + g(y_2)) + g(y_1 + g(y_2))}{g(y_1 + g(y_2))}$ Then , differentiate with respect to y to get $\frac{\partial f}{\partial y} = x^2 + g'(y)$ Thus , by equation ^② we get $(x^{2}-1) = x^{2}+9'(y).$ e get

you dont

need a constant

of integration here

because we will

set f to be

egral to a constant you dont need a constant $50, 9'(9) = -1.$ \overline{a} uf integration here $Thvf, g(y) = -y$ y because we w
set f to be set f to be
equal to a constant

Therefore
\n
$$
f(x,y) = x^{2}y + g(y)
$$

\n $= x^{2}y - y$
\nThis gives us that a solution to
\nthe ODE is given implicitly by
\n $x^{2}y - y = c$
\nwhere c is a constant.

Below I put ^a proof of Below I put a proof of
the main theorem in this
topic. It's mainly fir me
But if you're interested,
ree below. in this topic. It's mainly for me S_{α} interested, But if youre See below.

Let's prove this theorem.
\n
$$
\frac{\pi_{\text{Reo}}(em): Let M(x,y) and N(x,y)}{\pi_{\text{Reo}}(em): Let M(x,y) and N(x,y)}
$$
\n
$$
\frac{\pi_{\text{Reo}}(em): Let M(x,y) and N(x,y)}{\pi_{\text{Reo}}(em): R defined by the following result, $g(x)$ is a constant, $g(x)$ and $g(x)$ are the initial derivatives.
$$
\frac{\pi_{\text{Reo}}(em): For simplicity suppose R is the entire equation $\frac{\pi_{\text{Reo}}}{\pi_{\text{Reo}}(em): R(\pi_{\text{Reo}})} = \frac{3N}{\pi_{\text{Reo}}(em): R(\pi_{\text{Reo}})} = \frac{3}{\pi_{\text{Reo}}(em): R(\pi_{\text{Reo}}$
$$
$$

Proof: For simplicity suppose R is the entire
\n
$$
xy
$$
-plane and that M and N are continuous
\nfor all (x,y) and so are their partial derivatives.
\n $(\pm \sqrt{3})$ First suppose that M+Ny'=0 is exact.
\nThen there exists f where $\frac{\partial f}{\partial x} = M$ and $\frac{\partial f}{\partial y} = N$.
\nThen $\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(\frac{\partial}{\partial x}f) = \frac{\partial}{\partial x}(\frac{\partial}{\partial y}f) = \frac{\partial N}{\partial x}$.

(4) Suppose now that
$$
\frac{\partial n}{\partial y} = \frac{\partial n}{\partial x}
$$
. We will
\nshow that this implies that $M+My'=0$
\nis exact.
\nSince M is continuous we can define
\n $f(x,y) = \int M(x,y)dx + g(y)$ (*)
\nwhere g is any function of y.
\nWe want to now find $g(y)$ where
\n $N = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \int M(x,y)dx + g'(y)$
\nWe will need
\n $g'(y) = N - \frac{\partial}{\partial y} \int M(x,y)dx$
\nTo do this we can show that the RHS
\nis just a function of y and hence we
\ncan integrate it with respect to y to get g(y).
\nWe have that
\n $\frac{\partial}{\partial x} (N - \frac{\partial}{\partial y} \int M(x,y)dx) =$
\n $= \frac{\partial N}{\partial x} - \frac{\partial}{\partial x} \frac{\partial}{\partial y} \int M(x,y)dx$

$$
= \frac{3N}{8N} - \frac{39}{89} \frac{3}{8} \int N(x,y) dx
$$

\n
$$
= \frac{3N}{8N} - \frac{39}{89} \frac{3}{8} \int N(x,y) dx
$$

\n
$$
= \frac{3N}{8N} - \frac{39}{89} \frac{3}{8} \int N(x,y) dx
$$

\n
$$
= \frac{3N}{8N} - \frac{39}{89} \frac{3}{8} \int N(x,y) dx
$$

\n
$$
= \frac{3N}{8N} - \frac{39}{89} \frac{3}{8} \int N(x,y) dx
$$

\n
$$
= \frac{3N}{8N} - \frac{39}{89} \frac{3}{8} \int N(x,y) dx
$$

\n
$$
= \frac{3N}{8N} - \frac{39}{89} \frac{3}{8} \int N(x,y) dx
$$