Topic 5-Exact Equations

Suppose you have a first-order
equation of the form

$$M(x,y) + N(x,y) \cdot y' = 0$$

And further suppose there exists a
function $f(x,y)$ where
 $\frac{\partial f}{\partial x} = M(x,y)$ and $\frac{\partial f}{\partial y} = N(x,y)$
Then we have that
 $M(x,y) + N(x,y) \cdot y' = 0$
becomes
 $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial x} = 0$
 $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial x} = 0$
which is equivalent to
 $\frac{d f}{d x} = 0$
So for example
the family of curves

$$f(x,y)=c$$
 where c is a constant
will then satisfy $\frac{\partial f}{\partial x}=D$ and
hence $f(x,y)=c$ will give
an implicit solution to the ODE.

Summary

$$If \frac{\partial f}{\partial x} = M(x,y) \text{ and } \frac{\partial f}{\partial y} = N(x,y)$$

then the family of curves
 $f(x,y) = c$
where c is any constant will
give implicit solutions to
 $M(x,y) + N(x,y) \cdot y' = 0$

When the above conditions are Satisfied then we call M(x,y)+N(x,y)y=0 an exact equation.

Ex: Consider the equation

$$\frac{2xy + (x^{2}-1)y' = 0}{N(x_{1}y)}$$
We will see
how to find
this later

$$\frac{2f}{\partial x} = 2xy = M(x_{1}y)$$

$$\frac{2f}{\partial x} = x^{2} - 1 = N(x_{1}y)$$
Thus, the equation

$$x^{2}y - y = C$$
gives an implicit solution to

$$2xy + (x^{2}-1)y' = 0.$$
In this case we can actually solve
for y in terms of x and we get
We get $y = \frac{c}{x^{2}-1}$

Let's verity that this works.
We have

$$y = \frac{c}{x^{2}-1} = c(x^{2}-1)^{-1}$$

$$y' = -c(x^{2}-1)^{-2}, (2x) = -\frac{2xc}{(x^{2}-1)^{2}}$$
Plugging there into

$$2xy + (x^{2}-1)y' = 0$$
We get

$$2x(\frac{c}{x^{2}-1}) + (x^{2}-1)(\frac{-2xc}{(x^{2}-1)^{2}}) = D$$
So we did indeed find a solution.

How do we know if we have an exact equation?

Theorem: Let
$$M(x,y)$$
 and $N(x,y)$
be continuous and have continuous
first partial derivatives in some
rectangle R defined by $d f = R$
 $a < x < b$ and $c < y < d$
Then
 $M(x,y) + N(x,y) \cdot y' = 0$
is exact if and only if
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Ex: With the previous equation

$$\frac{2xy + (x^{2}-1)y' = 0}{N(x,y)}$$
We have that M and N are continuous
everywhere and

$$\frac{\partial M}{\partial x} = 2y \qquad \frac{\partial M}{\partial y} = 2x$$

$$\frac{\partial N}{\partial x} = 2x \qquad \frac{\partial N}{\partial y} = 0$$

$$\frac{\partial N}{\partial x} = 2x \qquad \frac{\partial N}{\partial y} = 0$$

Note that

$$\frac{\partial M}{\partial y} = Z \times = \frac{\partial N}{\partial x}$$

So we know that
 $Z \times y + (\chi^2 - 1) y' = 0$
is exact.
How did I find the f above?
Let's see how.
We need an f where

 $\frac{\partial f}{\partial x} = 2xy \qquad (D)$ $\frac{\partial f}{\partial y} = x^2 - 1 \qquad (2)$ Let's use equation () first. Integrate $\frac{\partial f}{\partial x} = 2 \times y$ with respect to x to get $f(x,y) = x^2y + g(y) + g(y) + g(x,y) = x^2y + g(y)$ Then, differentiate with respect to y to get $\frac{\partial f}{\partial y} = x^2 + g'(y)$ Thus, by equation @ we get $x^{2}-1 = x^{2} + g'(y).$ you dont need a constant So, g'(y) = -1.uf integration here because we will Thus, g(y) = -yftobe set equal to a constant

Therefore,

$$f(x_1y) = x^2y + g(y)$$

 $= x^2y - y$
This gives us that a solution to
The ODE is given implicitly by
 $x^2y - y = c$
where c is a contant.

Below I put a proof of the main theorem in this topic. It's mainly for me But if you're interested, see below.

Let's prove this theorem.

Theorem: Let
$$M(x,y)$$
 and $N(x,y)$
be continuous and have continuous
first partial derivatives in some
rectangle R defined by df
 $a < x < b$ and $c < y < d$
Then
 $M(x,y) + N(x,y) \cdot y' = 0$
is exact if and only if
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

proof: For simplicity suppose R is the entire
Xy-plane and that M and N are continuous
for all (x,y) and so are their partial derivatives.
(I) First suppose that M+Ny'=0 is exact.
Then there exists f where
$$\frac{\partial f}{\partial x} = M$$
 and $\frac{\partial f}{\partial y} = N$.
Then, $\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} (\frac{\partial}{\partial x} f) = \frac{\partial}{\partial x} (\frac{\partial}{\partial y} f) = \frac{\partial N}{\partial x}$.
Calc III - Clairants the applied to My and Nx

(4) Suppose now that
$$\frac{\partial H}{\partial y} = \frac{\partial N}{\partial x}$$
. We will
show that this implies that $M + Ny' = 0$
is exact.
Since M is continuous we can define
 $f(x_{i}y) = \int M(x_{i}y) dx + g(y)$ (*)
where g is any function of y.
Here we get that $\frac{\partial f}{\partial x} = M$.
We want to now find $g(y)$ where
 $N = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \int M(x_{i}y) dx + g'(y)$
We will need
 $g'(y) = N - \frac{\partial}{\partial y} \int M(x_{i}y) dx$
To do this we can show that the RHS
is just a function of y and hence we
can integrate it with respect to y to get g(y)
We have that
 $\frac{\partial}{\partial x} (N - \frac{\partial}{\partial y} \int M(x_{i}y) dx$

.

$$=\frac{\partial N}{\partial x} - \frac{\partial}{\partial y} \frac{\partial}{\partial x} \int M(x,y) dx$$

$$=\frac{\partial N}{\partial x} - \frac{\partial}{\partial y} M$$

since

$$=\frac{\partial N}{\partial x} - \frac{\partial H}{\partial y}$$

$$=\frac{\partial N}{\partial x} - \frac{\partial H}{\partial y}$$

Thus, such a g(y) exists.
And

$$f(x,y) = \int M(x,y) dx + \int (N(x,y) - \int M(x,y) dx) dy$$

will satisfy $\frac{\partial f}{\partial x} = M$ and $\frac{\partial f}{\partial y} = N$.